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Abstract
We propose a new systematic fibre bundle formulation of nonrelativistic
quantum mechanics. The new form of the theory is equivalent to the usual one
and is in harmony with the modern trends in theoretical physics and potentially
admits new generalizations in different directions. In it the Hilbert space of
a quantum system (from conventional quantum mechanics) is replaced by an
appropriate Hilbert bundle of states and a pure state of the system is described
by a lifting of paths or section along paths in this bundle. The evolution of
a pure state is determined through the bundle (analogue of the) Schrödinger
equation. Now the dynamical variables and density operators are described via
liftings of paths or morphisms along paths in suitable bundles. The mentioned
quantities are connected by a number of relations derived in this paper.

In the second part of this investigation are derived several forms of the
bundle (analogue of the) Schrödinger equation governing the time evolution of
state liftings of paths or sections along paths. We prove that up to a constant the
matrix-bundle Hamiltonian, entering the bundle analogue of the matrix form of
the conventional Schrödinger equation, coincides with the matrix of coefficients
of the evolution transport. This allows us to interpret the Hamiltonian as a
gauge field. We apply the bundle approach to the description of observables.
It is shown that to any observable there corresponds a unique Hermitian lifting
of paths or morphism along paths in corresponding bundles.

PACS numbers: 02.40.Ma, 03.65.Ca, 03.65.Ta, 04.40.Ma

AMS classification scheme numbers: 81P05, 81P99, 81Q99, 81S99

1. Introduction

This paper is the second part of our investigation on a fibre bundle approach to nonrelativistic
quantum mechanics. It is a straightforward continuation of [1].
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This paper is organized as follows.
Section 2 is devoted to the bundle analogues of the Schrödinger equation which are fully

equivalent to it. In particular, in it is introduced the matrix-bundle Hamiltonian, which governs
the quantum evolution through the matrix-bundle Schrödinger equation. The corresponding
matrix of the evolution transport is found. It is proved that up to a constant the matrix of the
coefficients of evolution transport coincides with the matrix-bundle Hamiltonian. On this basis
is derived the (invariant) bundle Schrödinger equation. Geometrically this simply means that
the corresponding state liftings are (parallelarly, or, more precisely, linearly) transported by
means of the evolution transport along paths.

In section 3 the question of the bundle description of observables is considered. It turns
out that to any observable there corresponds a unique Hermitian lifting of paths in the bundle
of point-restricted morphisms over the base of the Hilbert bundle of states.

Section 4 concludes.
The notation of this paper is the same as that in [1] and we are not going to recall it here.
The references to sections, equations, footnotes etc from [1] are obtained from their

sequential numbers in [1] by adding in front of them the Roman one (I) and a dot as a separator.
For instance, section I.4 and (I.5.13) mean, respectively, section 4 and equation (5.13)
(equation (13) in section 5) of [1].

Below, for reference purposes, we present a list of some essential equations of [1] which
are used in this paper. Following the convention given above, we retain their original reference
numbers.

ih̄
dψ(t)

dt
= H(t)ψ(t) (I.2.6)

ih̄
∂ U(t, t0)

∂t
= H(t) ◦ U(t, t0) U(t0, t0) = idF (I.2.8)

H(t) = ih̄
∂ U(t, t0)

∂t
◦ U−1(t, t0) = ih̄

∂ U(t, t0)

∂t
◦ U(t0, t) (I.2.9)

〈 A〉tψ := 〈 A(t)〉ψ(t) := 〈 A(t)〉tψ := 〈ψ(t)| A(t)ψ(t)〉
〈ψ(t)|ψ(t)〉 (I.2.11)

	γ (t) = l−1
γ (t)(ψ(t)) ∈ Fγ(t) (I.4.3)

〈·|·〉x = 〈lx · |lx ·〉 x ∈ M (I.3.1)

〈A‡�x |	x〉x := 〈�x |A	x〉x �x,	x ∈ Fx (I.3.14)

	γ (t) = Uγ (t, s)	γ (s) (I.5.7)

Uγ (t, s) = l−1
γ (t) ◦ U(t, s) ◦ lγ (s) s, t ∈ J. (I.5.10)

2. The bundle equations of motion

In conventional quantum mechanics, the time dependence of a state vector ψ ∈ F of a quantum
system is governed via the Schrödinger equation (I.2.6). It is natural to expect the existence of
an analogous equation for the state lifting 	 replacing ψ by (I.4.3) in the bundle description
of quantum mechanics. The derivation of this equation (or of its variants), which should only
be in bundle terms, is the major purpose of the present section. Regardless of some technical
problems, the idea is quite simple: using (I.4.3) and (I.5.7) or (I.5.10), one should transform the
Schrödinger equation into ‘pure’ bundle terms. A realization of such a procedure is given below.
The resulting (invariant) bundle equation of motion has an amazingly transparent geometrical
meaning: it expresses the fact that the state liftings/sections are linearly transported along the
reference path along which the quantum evolution is explored.
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2.1. Derivation of the equations

If we substitute (I.5.11) into (I.2.6)–(I.2.10), we ‘obtain’ the ‘bundle’ analogues of (I.2.6)–
(I.2.10). But they will be wrong! This is due to the fact that they will contain partial derivatives
such as ∂lγ (t)/∂t, ∂	γ (t)/∂t, and ∂Uγ (t, t0)/∂t , which are not defined at all. For instance, in
the first case we must have ∂lγ (t)/∂t = limε→0

(
1
ε
(lγ (t+ε) − lγ (t))

)
, but the ‘difference’ in this

limit is not defined (for ε �= 0) because lγ (t+ε) and lγ (t) act on different spaces, namely on Fγ(t+ε)

and Fγ(t) respectively. The same is the situation with ∂Uγ (t, t0)/∂t . The most obvious is the
contradiction in the relation ∂	γ (t)/∂t = limε→0

(
1
ε
(	γ (t + ε)−	γ (t))

)
, because 	γ (t + ε)

and 	γ (t) belong to different (for ε �= 0) vector spaces.
One can go through this difficulty by defining, for example, ∂	γ (t)/∂t like l−1

γ (t)∂ψγ (t)/∂t

(cf (I.4.1)) but this does not lead to any important or new results.
To overcome this problem, we are going to introduce local bases (or coordinates) and to

work with the matrices of the corresponding operators and vectors in them.
Let {ea(x), a ∈ �} be a basis in Fx = π−1(x), x ∈ M . The indices a, b, c, . . . ∈ � may

take discrete, or continuous, or both, values. More precisely, the set � has a decomposition
� = �d

⋃
�c, where �d is a union of (finite or countable) subsets of N (or, equivalently,

of Z) and �c is union of subsets of R (or of C). Note that �d or �c, but not both,
can be empty. This is why sums such as2 λaea(x) or λaµa for a ∈ � and λa, µa ∈ C

must be understood as a sum over the discrete (enumerable) part(s) of �, if any, plus the
(Stieltjes or Lebesgue) integrals over the continuous part(s) of �, if any. For instance
λaea(x) := ∑

a∈� λaea(x) := ∑
a∈�d

λaea(x) +
∫
a∈�c

λaea(x) da. For this reason it is better
to write

∫∑
a∈� := ∑

a∈�d
+

∫
a∈�c

da instead of
∑

a∈�, but we shall avoid this complicated
notation by using the assumed summation convention on indices repeated on different levels3.

The matrices corresponding to vectors or operators in a given field of bases will be denoted
with the same symbol but in boldface, for example4 Uγ (t, s) := [(

Uγ (t, s)
)a

b

]
and Ψγ (s) :=[

	a
γ (s)

]
, where Uγ (t, s) (eb(γ (s))) =:

(
Uγ (t, s)

)a
b
ea(γ (t)) and 	γ (s) =: 	a

γ (s)ea(γ (s)).
Analogously, we suppose that in F there will be a fixed basis {fa(t), a ∈ �} with respect

to which we shall use the same bold-faced matrix notation, for instance U(t, s) = [ Ub
a(t, s)

]
,

U(t, s) (fa(s)) =: ( U(t, s))ba fb(t), ψ(t) = [ψa(t)] , ψ(t) =: ψa(t)fa(t) and, finally,
lx(t) =

[
(lx)

b
a(t)

]
, lx (ea(x)) =: (lx)

b
a(t)fb(t). Generally, lx(t) depends on x and t , but

if x = γ (s) for some s ∈ J , we put t = s as from physical reasons is clear that Fγ(t)

corresponds to F at the ‘moment’ t , i.e. the components of lγ (s) are with respect to {ea(γ (s))}
and {fa(s)}. The same remark concerns ‘two-point’ objects such as Uγ (t, s) and U(t, s)

whose components will be taken with respect to pairs of bases such as ({ea(γ (t))}, {ea(γ (s))})
and ({fa(t)}, {fa(s)}) respectively.

Evidently, the equations (I.4.1) and (I.5.7)–(I.5.10) remain valid mutatis mutandis in
the introduced matrix notation: the kernel letters have to be made bold faced, the operator
composition (product) must be replaced by matrix multiplication and the identity map idFx

has

to be replaced by the unit matrix 11Fx
:= [

δba
]

:= [(
idFx

)b
a

]
of Fx in {ea(x)}. Here δba = 1 for

a = b and δba = 0 for a �= b, which means that ea(x) = δbaeb(x). For instance, using the above
definitions, one verifies that (I.5.10) is equivalent to

Uγ (t, s) = l−1
γ (t)(t)U(t, s)lγ (s)(s). (2.1)

2 Here and henceforth in this paper, we use the Einstein rule for summation over indices repeated on different levels.
3 For details concerning infinite-dimensional matrices see, for instance, [2] and [3, chapter 7, section 18]. A
comprehensive presentation of the theory of infinite matrices is given in [4]; this book is mainly devoted to infinite
discrete matrices but it also contains some results on continuous infinite matrices related to Hilbert spaces.
4 The matrices U(t, s) andU(t, s) are closely related to propagator functions [5], but we will not need these explicit
connections. For explicit calculations and construction of U(t, s), see [5, sections 21, 22].
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Let Ω(x) := [
! b

a (x)
]

and ω(t) := [
ω b

a (t)
]

be nondegenerate matrices. The changes

{ea(x)} → {e′a(x) := ! b
a (x)eb(x)} {fa(t)} → {e′a(t) := ω b

a (t)eb(t)}
of the bases in Fx and F , respectively, lead to the transformation of the matrices of the
components of �x ∈ Fx and φ ∈ F according to

Φx �→ Φ′x = (Ω�(x))−1Φx φ �→ φ′ = (ω�(t))−1φ. (2.2)

Here the superscript � means matrix transposition, for example Ω�(x) := [ (
!�(x)

)a
b

]
with(

!�(x)
)a

b
:= ! a

b (x). One easily verifies the transformation

lx(t) �→ l′x(t) =
(
ω�(t)

)−1
lx(t)Ω�(x) (2.3)

of the components of the linear isomorphisms lx : Fx → F under the above changes.
For any operator A(t) : F → F we have

A(t) �→ A′(t) = (ω�(t))−1 A(t)ω�(t). (2.4)

Analogously, if A(t) is a morphism of (F, π,M), i.e. if A : F → F and π ◦ A = idM ,
and Ax := A(t)|Fx

, then

Ax(t) �→ A′x(t) =
(
Ω�(t)

)−1
Ax(t)Ω�(t). (2.5)

Note that the components of U(t, s), when referred to a pair of bases {ea(t)} and {ea(s)},
transform according to

U(t, s) �→ U ′(t, s) = (
ω�(t)

)−1 U(t, s)ω�(s). (2.6)

Analogously, the change {ea(γ (t))} → {e′a(t; γ ) := ! b
a (t; γ )eb(γ (t))}, with a nondegenerate

matrix Ω(t; γ ) := [
! b

a (t; γ )
]

along γ , implies5

Uγ (t, s) �→ U ′γ (t, s) =
(
Ω�(t; γ )

)−1
Uγ (t, s)Ω�(s; γ ). (2.7)

Substituting ψ(t) = ψa(t)fa(t) into (I.2.6), we obtain the matrix Schrödinger equation

dψ(t)

dt
=Hm(t)ψ(t) (2.8)

where

Hm(t) :=H(t)− ih̄E(t) (2.9)

is the matrix Hamiltonian (in the Hilbert space description). HereE(t) = [
E b

a (t)
]

determines
the expansion of dfa(t)/dt over {fa(t)} ⊂ F , that is dfa(t)/dt = E b

a (t)fb(t); if fa(t)

are independent of t , which is the usual case, we have E(t) = 0. In the last case
Hm = H. It is important to note that Hm is independent of E(t). In fact, applying (I.2.9)
to the basic vector fa(t), we obtain H(t)fa(t) = ih̄[( ∂

∂t
U(t, t0))fb(t0)] U b

a (t0, t) =
ih̄[ ∂

∂t
(fc(t) U c

b (t, t0))] U b
a (t0, t), so

H(t) = ih̄
∂ U(t, t0)

∂t
U(t0, t) + ih̄E(t) (2.10)

which leads to

Hm(t) = ih̄
∂ U(t, t0)

∂t
U(t0, t). (2.11)

5 Cf [6, equation (2.11)] or [7, equation (4.10)], where the notation L(t, s; γ ) = H(t, s; γ ) = Uγ (s, t; γ ) and
A(t) = Ω�(t; γ ) is used.
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Substituting the matrix form of (I.4.1) into (2.8), we find the matrix-bundle Schrödinger
equation

ih̄
dΨγ (t)

dt
=Hm

γ (t)Ψγ (t) (2.12)

where the matrix-bundle Hamiltonian is

Hm
γ (t) := l−1

γ (t)(t)H(t)lγ (t)(t)− ih̄l−1
γ (t)(t)

(
dlγ (t)(t)

dt
+E(t)lγ (t)(t)

)
. (2.13)

Combining (2.9) and (2.13), we find the following connection between the conventional
and matrix-bundle Hamiltonians:

Hm
γ (t) = l−1

γ (t)(t)Hm(t)lγ (t)(t)− ih̄l−1
γ (t)(t)

dlγ (t)(t)

dt
. (2.14)

Remark 2.1. Choosing ea(x) = l−1
x (fa) for dfa(t)/dt = 0, we obtain lx(t) =

[
δba

]
. Then

Hγ (t) = H(t). So, as H† = H, we have
(
Hm

γ (t)
)† = H†(t) = H(t) = Hm

γ (t), where we
also use the dagger (†) to denote matrix Hermitian conjugation. Here Hm

γ (t) is a Hermitian
matrix in the chosen basis, but in other bases it may not be as such (see (2.24) below).
Analogously, choosing {fa(t)} such thatE(t) = 0, we see that Hm(t) =H(t) is a Hermitian
matrix, otherwise it may not be as such.

Remark 2.2. Note that, due to (2.14), the transition Hm → Hm
γ is very much like a gauge

(or connection) transformation [8] (see also below (2.22)–(2.24)).

Because of (2.12) and (I.5.7) there is a bijective correspondence between Uγ and Hm
γ

expressed through the initial-value problem (cf (I.2.8))

ih̄
∂Uγ (t, t0)

∂t
=Hm

γ (t)Uγ (t, t0) Uγ (t0, t0) = 11Fγ(t0)
(2.15)

or via the integral equation equivalent to it

Uγ (t, t0) = 11Fγ(t0)
+

1

ih̄

∫ t

t0

Hm
γ (τ )Uγ (τ, t0) dτ. (2.16)

So, if Hm
γ is given, we have (cf (I.2.10))

Uγ (t, t0) = Texp
∫ t

t0

1

ih̄
Hm

γ (τ ) dτ (2.17)

and, conversely, if Uγ is given, then (cf (I.2.9) and (2.11))6

Hm
γ (t) = ih̄

∂Uγ (t, t0)

∂t
U−1

γ (t, t0) = ih̄
∂Uγ (t, t0)

∂t
Uγ (t0, t). (2.18)

The next step is to write the above matrix equations into an invariant, i.e. basis-independent,
form. For this purpose we shall use the derivation introduced in [6, 7] along paths uniquely
corresponding to any linear transport along paths in a vector bundle.

According to definitions I.3.3 and I.3.4 the derivation along paths corresponding to the
bundle evolution transport U is a linear mapping

D : PLift1(F, π,M)→ PLift0(F, π,M)

6 Expressions like (∂ U(t, t0)/∂t) U(t0, t), (∂Uγ (t, t0)/∂t)U
−1
γ (t, t0), and U(t, t0) U(t0, t1) are independent of t0

due to [6, propositions 2.1 and 2.4] or [7, propositions 2.1 and 2.4] (see also (I.3.23), (I.3.44), and [9, lemma 3.1]).
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PLiftk(F, π,M) being the set of Ck liftings of paths from M to F , such that for every
C1 lifting λ of paths and every path γ : J → M we have D : λ �→ D(λ) = Dλ and
Dλ : γ �→ Dγ (λ) = (Dλ)γ is defined by Dγλ : s �→ D

γ
s λ ∈ Fγ(s) with

Dγ
s (λ) := lim

ε→0

{
1

ε

[
Uγ (s, s + ε)λγ (s + ε)− λγ (s)

]}
(2.19)

where λ : γ �→ λγ .
By (I.3.42) (see also [6, equation (2.27)] or [7, proposition 4.2]) the explicit local form

of (2.19) in a frame {ei(·, γ )} along γ is

Dγ
s λ =

(
dλa

γ (s)

ds
+ +a

b(s; γ )λb
γ (s)

)
ea(s; γ ) (2.20)

where the coefficients +b
a(s; γ ) of U are defined by (cf (I.3.43))

+b
a(s; γ ) := ∂

(
Uγ (s, t)

)b
a

∂t

∣∣∣∣∣
t=s
= − ∂

(
Uγ (t, s)

)b
a

∂t

∣∣∣∣∣
t=s

. (2.21)

Using (I.5.9) and (2.18), both for t0 = t , we see that

Γγ (t) := [+b
a(t; γ )] = − 1

ih̄
Hm

γ (t) (2.22)

which expresses a fundamental result: up to a constant (equal to −ih̄) the matrix-bundle
Hamiltonian coincides with the matrix of coefficients of the bundle evolution transport (in
a given field of bases). Let us recall that, using other arguments, an analogous result was
obtained in [10, section 5].

There are two invariant operators corresponding to the Hamiltonian H in F : the evolution
transport U and the corresponding derivation along paths D. Equations (2.12)–(2.22), as well
as the general results of [6, section 2] and [7, section 4], imply that these three operators,
namely H, U and D, are equivalent in a sense that if one of them is given, then the remaining
ones are uniquely determined.

Example 2.1. Let {ea(x)} be fixed by ea(x) = l−1
x (fa) for df (t)/dt = 0. Then Hm

γ (t) is a
Hermitian matrix (see remark 2.1). Consequently, in this case, Γγ (t) is anti-Hermitian, i.e.(
Γγ (t)

)† = −Γγ (t). Note that for other choices of the bases this property may not hold.

Example 2.2. Let H be given and independent of t , i.e. ∂H(t)/∂t = 0, and {ea(x)} be fixed by
ea(x) = l−1

x (fa) for df (t)/dt = 0. Then lx(t) =
[
δba

]
with δba defined above. Equations (2.13)

and (2.22) yield Hm
γ (t) = H(t) and Γγ (t) = −H(t)/ih̄. Finally, now the solution of (2.15)

is Uγ (t, t0) = exp (H(t)(t − t0)/ih̄) (cf (2.17)).

According to [6, equation (2.30)] (or [7, equation (4.11)]) and footnote I.31, if a basis
{ea(t; γ )} is changed to {e′a(t; γ ) = ! b

a (t; γ )eb(γ (t))} with det Ω(t; γ ) �= 0, Ω(t; γ ) :=[
! b

a (t; γ )
]
, then Γγ (t) transforms into7 (see (I.3.46))

Γ′γ (t) = (Ω�(t; γ ))−1Γγ (t)Ω�(t; γ ) + (Ω�(t; γ ))−1 dΩ�(t; γ )

dt
. (2.23)

This result is also a corollary of (2.6) and (2.21).
Hence (see (2.22)), the matrix-bundle Hamiltonian undergoes the change Hm

γ (t) �→
′Hm

γ (t) where

′Hm
γ (t) = (Ω�(t; γ ))−1Hm

γ (t)Ω�(t; γ )− ih̄(Ω�(t; γ ))−1 dΩ�(t; γ )

dt
. (2.24)

7 In [6, 7] the matrix A(t) = Ω�(t; γ ) is used instead of Ω(t; γ ).
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This result can also be deduced from (2.14).
Now we are able to write the matrix-bundle Schrödinger equation (2.12) in an invariant

form. Substituting (2.22) into (2.12) and using (2.20), we find that (2.12) is equivalent to

D
γ
t 	 = 0 (2.25)

or, as t ∈ J is arbitrary, to

Dγ	 = 0. (2.26)

Since γ : J → M is arbitrary, the last equation can be rewritten as

D	 = 0. (2.27)

This is the (invariant) bundle Schrödinger equation (for the state liftings). Since it coincides
with the linear transport equation [11, definition 5.2] for the evolution transport, it has a very
simple and fundamental geometrical meaning. By [11, proposition 5.4] this is equivalent to
the statement that 	γ is a lifting (linearly) transported along γ with respect to the evolution
transport (expressed in other terms via (I.5.7); see [9, definition 2.2]). Note that (2.25)
and (I.5.7) are compatible as [7, equation (4.5)] is fulfilled (see also [6, equation (2.25)]):
D

γ
t (U) ≡ 0, t ∈ J where U ∈ PLift(F, π,M) is the lifting of paths generated by U (see

definition I.3.5). Moreover, if D is given (independently of U , e.g. through (2.20)), from [11,
proposition 5.4] it follows that U is the unique solution of the (invariant) initial-value problem8

D
γ
t (U) = 0 Uγ (t0, t0) = idFγ(t0)

(2.28)

for fixed t0 ∈ J . Since here t ∈ J and γ : J → M are arbitrary, the equation in this
initial-value problem is equivalent to

Dγ (U) = 0 (2.29)

or to

D(U) = 0. (2.30)

This is the bundle Schrödinger equation for the evolution transport U .

Remark 2.3. Mathematically, equation (2.27) (or (2.25)) is a trivial corollary of (I.5.7)
and (I.3.40). But this derivation of (2.27) leaves open the problem for its relation (equivalence)
with the Schrödinger one. Besides, such a ‘quick’ derivation of (2.27) leaves hidden the above-
mentioned properties of the matrix Hamiltonians, in particular the fundamental relation (2.22).

2.2. Inferences

Thus we see that there are two equivalent ways to describe the unitary evolution of a quantum
system: (i) by means of the evolution operator U (see (I.2.1)) or by the Hermitian Hamiltonian
H (see (I.2.6)) in the Hilbert space F (which is the typical fibre in the bundle description) and
(ii) via the evolution transport U (see (I.5.7)), which is a Hermitian (and unitary) transport
along paths, or the derivation D along paths (see (2.25)) in the Hilbert bundle (F, π,M). In
the bundle description U corresponds to U (see (I.5.10)) and D to H (see (2.20) and (2.22)).

We derived the bundle Schrödinger equation (2.27) from the ‘classical’ Schrödinger
equation (I.2.6); the equivalence of the two equations is evident from the above considerations.

Now we have at our disposal all tools required for pure bundle description of the evolution
of a (pure) quantum system.

8 In fact, (2.28) is the inversion of (2.19) with respect to U .
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Given a system characterized by a derivation D along paths, if the system’s bundle state
victor 	0

γ is known along γ : J → M at a point t0 ∈ J , the state lifting 	 of paths is a solution
of the bundle Schrödinger equation (2.25) under the initial condition

	γ (t0) = 	0
γ . (2.31)

By virtue of (2.20), equation (2.25) and condition (2.31) form a standard initial-value problem
for a first-order system of ordinary differential equations (with respect to the time t) which has
solutions along γ [12]9. This solution is

	γ (t) = Uγ (t, t0)	
0
γ

where the evolution transport U could be found as the unique solution of the initial-value
problem (2.28)

Above we supposed the system to be described via a derivation D along paths instead
of by a Hamiltonian H. These are equivalent approaches. Actually, in a local field of bases
along γ , the matrix of H and that of the coefficients of D are connected by (2.22) and (2.13)
and, hence, can uniquely be expressed through each other. Consequently, if the Hamiltonian
H is known, one can construct from it the derivation D and vice versa. In the next section we
shall see that to the Hamiltonian H, as an observable, in the bundle description corresponds,
besides D, a suitable lifting H of paths or (multiple-valued) sections along paths, the bundle
Hamiltonian.

Now we shall derive a new form of the bundle Schrödinger equation in terms of the
derivation D̃ along paths in morM(F, π,M) induced by the derivation D along paths generated
by the evolution transport10 U .

Applying equation (2.20), we can find the explicit (matrix of the) action of D̃
γ
t (C) :=

D
γ
t ◦ C, C ∈ PLift1(morM(F, π,M)), on a state lifting 	 provided the lift Cγ is linear.

Let [X] be the matrix of a vector or an operator X in {ea}. Due to (2.20), we have

[(D̃γ
t (C))	] =

(
d

dt
Cγ (t)

)
Ψγ (t) +Cγ (t)

(
d

dt
Ψγ (t)

)
+ Γγ (t)Cγ (t)Ψγ (t)

which is a special case of (I.3.50). Substituting here d
dt Ψγ (t) from (2.12) and using (2.22), we

obtain the matrix equation

[(D̃γ
t (C))	] =

(
d

dt
Cγ (t)

)
Ψγ (t) +

[
Γγ (t),Cγ (t)

]
−Ψγ (t) (2.32)

where [·, ·]− denotes the commutator of matrices, or

[D̃γ
t (C)] = d

dt
Ct +

[
Γγ (t),Cγ (t)

]
− . (2.33)

Comparing this equation with (I.3.49), we obtain [D̃γ
t (C)] = [◦Dγ

t (C)] where ◦D is the
derivation along paths in morM(F, π,M) associated with D according to (I.3.48). Therefore
the invariant bundle form of (2.33) is

D̃(C) = ◦D(C) (2.34)

where C ∈ PLift1(morM(F, π,M)) acts only on state liftings according to (I.3.34) and Cγ is
linear. Equivalently, we can write

D̃|O = ◦D|O (2.35)

with O being the set of just-described liftings C.

9 This initial-value problem is analogous (and equivalent) to that for the Schrödinger equation (I.2.6) and
condition (I.2.7).
10 For the notation and corresponding definitions, see section I.3.3, in particular, equations (I.3.33)–(I.3.37).
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We derived (2.34) under the assumption that Cγ is linear and C acts on state liftings, i.e. on
ones satisfying the matrix-bundle Schrödinger equation (2.12). Conversely, if we apply (2.33)
to some vector �γ (t) ∈ Fγ(t) and compare the result with that for

(
D

γ
t (C)

)
(�) obtained

through (2.20) (see above), we see that �γ (t) satisfies (2.12). Consequently, equation (2.34)
with linear Cγ is valid if and only if C is applied on liftings representing the evolution of a
quantum system. Hence 	 is a state lifting, i.e. it satisfies, for instance, the bundle Schrödinger
equation (2.27), iff the equation

(D̃(C))	 = (◦D(C))	 (2.36)

is valid for every lifting C in the bundle of restricted morphisms such that Cγ is linear for
every γ . In particular, (2.36) is valid for the (Hermitian) liftings (of paths) corresponding to
observables (see further section 3) and 	 satisfying the bundle Schrödinger equation (2.27).

The above overall discussion shows the equivalence of (2.36) (for every C with Cγ linear)
to the Schrödinger equation (in any one of its (equivalent) forms mentioned until now). That
is why (2.36) can be called the matrix-lifting Schrödinger equation.

We want to point to a substantial difference between, on one hand, the bundle Schrödinger
equation (2.27), or (2.36), or (2.30) and, on the other hand, its initial conditions (see (2.31)
or (2.28)) or the conventional Schrödinger equation (I.2.6) and its initial conditions (I.2.7). The
bundle Schrödinger equations are absolutely invariant in a sense that they do not depend on any
coordinates, space (-time) points or reference paths such as γ and hence, in our interpretation,
are observer independent. In this vein, the bundle Schrödinger equations are analogous to
the covariant equations in general relativity, which, due to their tensorial character, have
similar properties. In contrast to the mentioned observation, the initial bundle conditions
depend on the reference path γ , i.e. are observer dependent as, for example, the conventional
Hamiltonian H is11. Consequently in the Hilbert bundle description the observer dependence,
i.e. the dependence on the reference path γ , is ‘moved’ from the equations of motion to their
initial conditions. It is clear that this dependence cannot be removed completely due to the
equivalence between the Hilbert space and Hilbert bundle descriptions of quantum mechanics.

Since now we have at our disposal the machinery required for analysis of [14], we, as
promised in section I.1, want to make some comments on it. In [14, p. 1455, left column,
paragraph 4] it is stated ‘that in the Heisenberg gauge (picture) the Hamiltonian is the null
operator’. If so, all eigenvalues of the Hamiltonian vanish and, as they are picture independent,
they are null in any picture of quantum mechanics. Consequently, from here one deduces the
absurd conclusion that the ‘energy levels of any system coincide and correspond to one and
the same energy equal to zero’. Since the paper [14] is mathematically completely correct
and rigorous, there is something wrong with the physical interpretation of the mathematical
scheme developed in it. Without going into details, we describe below the solution of this
puzzle, which simultaneously throws a bridge between [14] and the present investigation.

In [14] the system’s Hilbert space H is replace by a differentiable Hilbert bundle E(R+,H)

(in our terms (E, π,R+)with a fibre H), R+ := {t : t ∈ R, t � 0}, which is an associated Hilbert
bundle of the principle fibre bundle P

(
R+,U(H)

)
of orthonormal bases of H where U(H) is

the unitary group of (linear) bounded invertible operators in H with bounded inverse. Let
p : U(H)→ GL(dim H,C) be a (linear and continuous) representation of U(H) in the general
linear group of dim H-dimensional matrices. An obvious observation is that [14, equation (4.6)]
under p transforms, up to notation, to our equation (2.24) (in [14] h̄ = 1 is taken). Thus, we

11 For instance, suppose two point-like free particles 1 and 2 have masses ma and momentum operators pa , a = 1, 2,
with respect to some observer. The particle’s Hamiltonians are Ha = p2

a/2m, a = 1, 2. The Hamiltonian of the
second particle with respect to the first one is H1,2 = p2/2m (after the elimination of the centre of mass movement)
with p := (m2p1 −m1p2)/m1m2 and m := m1m2/(m1 + m2). For details, see [13, chapter 9, sections 11, 12].
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see that what in [14] is called the Hamiltonian is actually the (analogue of the) matrix-bundle
Hamiltonian Hm

γ (t), not the Hamiltonian H itself. This immediately removes the above-
mentioned conflict: as we shall see later in the third part of this series, along any γ (or, over R+

in the notation of [14]—see below), we can choose a field of frames (bases) in which Hm
γ (t)

identically vanishes but, due to (2.13), this does not imply the vanishing of the Hamiltonian at
all. This particular choice of the frame along γ corresponds to the ‘Heisenberg gauge’ in [14],
normally known as the Heisenberg picture.

Having in mind the above, we can describe [14] as follows. In it we have F = E,
M = R+, F = H (the conventional system’s Hilbert space), J = R+, γ = idR+ (other choices
of γ correspond to reparametrization of the time) and ∂

∂t
, t ∈ R+ is the analogue of D+ in [14].

As we have already pointed out, the matrix-bundle HamiltonianHm
γ (t) represents the operator

A(t) of [14], incorrectly identified there with the ‘Hamiltonian’, and the choice of a field of
bases over γ (J ) = R+ = M corresponds to an appropriate ‘choice of the gauge’ in [14].
Now, after a correspondence between [14] and this paper is set, one can see that under the
representation p the main results of [14], expressed by [14, equations (4.5), (4.6) and (4.8)],
correspond to our equations (2.25) (see also (2.20)), (2.24) and (2.5) respectively.

Ending the comment on [14], we note two things. First, this paper uses a rigorous
mathematical base, analogous to that in [15], which is not a goal of our work. Second,
the ideas of [14] are a very good motivation for the present investigation and are helpful for its
better understanding.

3. The bundle description of observables

In quantum mechanics it is accepted that to any dynamical variable, say AAA, there corresponds
a unique observable, say A(t), which is a Hermitian linear operator in the Hilbert space F ,
i.e. A(t) : F → F , A(t) is linear, and A† = A [3, 15, 16].

The mean value of an observable A in a state with state vector ψ ∈ F with finite norm is
calculated according to (I.2.11). It is interpreted as an observed (mean) value of the dynamical
variableAAA at a stateψ . This assumption and the probabilistic interpretation of the wavefunction
ψ are the main tools for predicting experimentally observable results in quantum mechanics.
As we said earlier in section I.4.3, the latter of these tools is transferred in Hilbert bundle
quantum mechanics in an evident way. The bundle version of the former is the main task of
this section. Below it will be shown that the proper bundle analogue of A is a suitable lifting
of paths (in the bundle of restricted morphisms of the Hilbert bundle of states) or a (generally
multiple-valued) morphism along paths (in the system’s Hilbert bundle).

3.1. Heuristic introduction

Let ψ(λ)(t) ∈ F be an eigenvector of A(t) with eigenvalue λ (∈ R), i.e. A(t)ψ(λ)(t) =
λψ(λ)(t). According to (I.4.3) ψ(λ)(t) corresponds to the vector 	(λ)

γ (t) = l−1
γ (t)ψ

(λ)(t) ∈ Fγ(t)

in the bundle description. However, the Hilbert space and Hilbert bundle descriptions of a
quantum evolution should be fully equivalent. Hence to A(t) in Fγ(t) there should correspond
a certain operator, which we denote by Aγ (t). We define this operator by demanding
every 	(λ)

γ (t) to be its eigenvector with eigenvalue λ, i.e.
(
Aγ (t)

)
	(λ)

γ (t) := λ	(λ)
γ (t).

Combining this equality with the preceding two, we easily verify that
(
Aγ (t) ◦ l−1

γ (t)

)
ψ(λ)(t) =(

l−1
γ (t) ◦ A(t)

)
ψ(λ)(t), where the linearity of lx has been used. Admitting that {ψ(λ)(t)} is a

complete set of vectors, i.e. a basis of F , we find

Aγ (t) = l−1
γ (t) ◦ A(t) ◦ lγ (t) : Fγ(t)→ Fγ(t). (3.1)
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More ‘physically’, the same result is derivable from (I.2.11) too. The mean value 〈 A〉tψ
of A at a state ψ(t) is given by (I.2.11) and the mean value of Aγ (t) at a state 	γ (t) is

〈
Aγ (t)

〉
	γ (t)

:= 〈
Aγ (t)

〉t
	γ

:= 〈	γ (t)|Aγ (t)	γ (t)〉γ (t)

〈	γ (t)|	γ (t)〉γ (t)

(3.2)

i.e. is it is given via (I.2.11) in which the scalar product 〈·|·〉x , defined by (I.3.1), is used instead
of 〈·|·〉. We define Aγ (t) by demanding

〈 A(t)〉tψ = 〈Aγ (t)〉t	γ
. (3.3)

Physically this condition is quite natural as it means that the observed values of the dynamical
variables are independent of the way we calculate them. From this equality, (I.4.1) and (I.3.1),
we obtain 〈ψ(t)| A(t)ψ(t)〉 = 〈ψ(t)|lγ (t) ◦ Aγ (t) ◦ l−1

γ (t)ψ(t)〉, which, again, leads to (3.1).
Thus we have also proved the equivalence of (3.1) and (3.3).

The above considerations lead to the idea that to every observable A at a moment t

there should correspond an operator Aγ (t), given by (3.1), in the fibre Fγ(t) = π−1(γ (t)).
It is almost evident, if γ : J → M is without self-intersections, that the collection of maps
{Aγ (t)|t ∈ J } forms a morphism over γ (J ) of the Hilbert bundle of the system restricted on
γ (J ).

3.2. Rigorous considerations

As mentioned earlier (see section I.4), postulates I.4.1 and I.4.2 are not enough for the bundle
description of observables. The contents of section 3.1 confirm this opinion. Relying on the
above not quite rigorous results, we formulate the missing section of the chain as the next
postulate.

Postulate 3.1. Let (F, π,M) be the Hilbert bundle of a quantum system, γ : J → M ,
and t ∈ J . In the bundle description of quantum mechanics, every dynamical variable
AAA characterizing the system is represented by a map A assigning to the pair (γ, t) a map
Aγ (t) : π−1(γ (t))→ π−1(γ (t)) such that

Aγ (t) = l−1
γ (t) ◦ A(t) ◦ lγ (t) (3.4)

where A(t) : F → F is the linear Hermitian operator (in the system’s Hilbert space F)
representing AAA in the conventional quantum mechanics. If at a moment t ∈ J the system is in
a state characterized by a bundle state vector 	γ (t) with a finite norm (in Fγ(t)), the observed
value of AAA (or of A) with respect to γ at a moment t is equal to the mean value of Aγ (t) in
	γ (t), which, by definition, is given by (3.2).

From (3.4), (3.2), (I.4.3) and (I.2.11), we derive (3.3). This simple result has a fundamental
meaning: the observed values of a dynamical variable are (and must be!) independent of the
way they are calculated. This assertion may be called the ‘principle of invariance of the
observed (mean) values’ and its essence is the independence of the physically measurable
quantities of the mathematical way we describe them. In our context, it means the coincidence
of the observed values of a dynamical variable calculated in the Hilbert bundle and Hilbert space
descriptions. In other words, we can express the same by saying that the predictions of both
conventional and bundle versions of quantum mechanics are absolutely identical regardless of
the existence of three free parameters (the base M , the set {lx |x ∈ M} and the path γ ) in the
bundle case.

Let us now clarify the mathematical nature of the mapping A introduced via postulate 3.1.
First of all, the maps Aγ (t) are linear as A and lγ (t) are (see (3.4)). If we define A as a map
A : γ �→ Aγ with Aγ : t �→ Aγ (t), we see that Aγ : J → FM

0 , where

FM
0 := {ϕx |ϕx : Fx → Fx, x ∈ M} = {ϕx |ϕx = ϕ|Fx

, x ∈ M, ϕ ∈ MorM(F, π,M)}
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is the bundle space of the bundle morM(F, π,M) of restricted morphisms over M (see
section I.4.1). Since the bundles (F, π,M) and morM(F, π,M) have a common base, the
manifold M , we conclude that Aγ is a lifting of γ : J → M in morM(F, π,M) (not in
(F, π,M)!). Consequently, the map A, as considered above, is a lifting of paths in the bundle
of restricted M-morphisms of the system’s Hilbert bundle of states,

A ∈ PLift
(
morM(F, π,M)

)
. (3.5)

The linear maps Aγ (t) : Fγ(t) → Fγ(t) are Hermitian. Indeed, using (I.3.7) and (I.3.8) for
y = x = γ (t) and Ax→x = Aγ (t), and (3.4), we obtain

A‡
γ (t) = Aγ (t) (3.6)

where the Hermiticity of A was used. A lifting Aγ in morM((F, π,M)) of γ : J → M

is called Hermitian if (3.6) holds for every t ∈ J ; we denote this symbolically by writing
A‡

γ = Aγ . Respectively, a lifting A in PLift(morM(F, π,M)) is Hermitian, A‡ = A, if
A : γ �→ Aγ and A‡

γ = Aγ for every path γ ∈ P(M) in M .
Let us summarize. In the bundle description a dynamical variable AAA is represented by a

Hermitian lifting A of paths in the bundle of restricted morphisms over the base of the Hilbert
bundle of states. For A equations (3.4) hold and its mean value along γ at a moment t for a
system with state lifting 	 is

〈A〉t,γ	 := 〈Aγ (t)〉t	γ
(3.7)

with the rhs of this equality given by (3.2).
The map A, provided via postulate 3.1, can also be considered as a (multiple-valued)

morphism along paths of the Hilbert bundle of states12. On one hand, define A : γ �→ γA with

γA : x �→ {Aγ (t)|γ (t) = x, t ∈ J } for x ∈ γ (J ). If γ is without self-intersections, then γA

is in Morγ (J )(F, π,M)|γ (J ) (see section I.4.1). On the other hand, we can define A : γ �→ γA

by γA : π−1(γ (J ))→ π−1(γ (J )) with γA|π−1(x) = {Aγ (t)|γ (t) = x, t ∈ J }. In this case, if
γ is without self-intersections, γA ∈ Morγ (J )(F, π,M)|γ (J ), i.e. up to a bijective map γA is
in Sec

(
morγ (J )(F, π,M)|γ (J )

)
. Recalling that a morphism ϕ over M along paths of a bundle

(E, π, B) is a map ϕ : γ �→ ϕγ ∈ Morγ (J )(F, π,M)|γ (J ) for every path γ ∈ P(B), we see that
A is a morphism over M along paths without self-intersections. However, if γ is not injective,
the map A : γ �→ γA is, generally, a multiple-valued morphism (over M) along paths of
(F, π,M) and it gives an alternative description of the map A introduced via postulate 3.1. If
the multiplicity of A as a morphism along paths is really presented, this description will rarely
be employed; if A as a morphism is single valued, it is somewhat ‘simpler’ to consider A as a
morphism than as a lifting of paths and, therefore, this interpretation will be preferred.

Definition 3.1. The unique Hermitian lifting of paths in the bundle of restricted morphisms
(over the base of the Hilbert bundle of states) corresponding to a dynamical variable will be
called an observable lifting (of paths); the corresponding (multiple-valued) morphism along
paths of the Hilbert bundle of states will be called an observable morphism (along paths).

By virtue of (3.6), the observable morphisms along paths are Hermitian,

A‡ = A (3.8)

which is also a corollary of (3.4) and (I.3.15).
Generally, to every operator A : F → F there corresponds a unique (global) morphism

A ∈ Mor(F, π,M) given by

Ax = A
∣∣
Fx
= l−1

x ◦ A ◦ lx x ∈ M A : F → F . (3.9)

12 Cf the analogous situation concerning state liftings and sections in section I.4.3.
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Consequently to an observable A(t) can be assigned the (global) morphism A(t), A(t)|Fx
=

l−1
x ◦ A(t) ◦ lx , but this morphism A(t) is almost useless for our goals as it simply gives in

any fibre Fx a linearly isomorphic image of the initial observable A(t) (see section I.4).
Notice that Aγ (t) generally depends explicitly on t even if A does not. In fact, from (3.1)

we obtain
∂Aγ (t)

∂t
= [
gγ (t),Aγ (t)

]
− + l−1

γ (t)(t)
∂ A(t)

∂t
lγ (t)(t) (3.10)

where [·, ·]− denotes the commutator of corresponding quantities, and

gγ (t) := −l−1
γ (t)(t)

dlγ (t)(t)

dt
. (3.11)

In particular, to the Hamiltonian H in F there corresponds the bundle Hamiltonian H

given by

Hγ (t) := l−1
γ (t) ◦H(t) ◦ lγ (t). (3.12)

This is an observable lifting of paths or morphism along paths.
From (3.12), using (I.2.9) and (I.5.10), we find

Hγ (t) = ih̄l−1
γ (t) ◦

∂ U(t, t0)

∂t
◦ lγ (t0) ◦ Uγ (t0, t). (3.13)

From here a relationship between the matrix-bundle Hamiltonian and the bundle Hamiltonian
can be obtained. For this purpose, we write (3.13) in a matrix form and, using (2.18) and
dfa(t)/dt = E b

a fb(t), we obtain

Hγ (t) =Hm
γ (t) + ih̄l−1

γ (t)(t)

(
dlγ (t) (t)

dt
+E(t)lγ (t)(t)

)
. (3.14)

Substituting here (2.13), we obtain

Hγ (t) = l−1
γ (t)(t)H(t)lγ (t)(t) (3.15)

which is simply the matrix form of (3.12). Combining (3.14) with (2.14), we find the following
connection between the matrix of the bundle Hamiltonian and the matrix Hamiltonian:

Hγ (t) = l−1
γ (t)(t)Hm(t)lγ (t)(t) + ih̄l−1

γ (t)(t)E(t)lγ (t)(t). (3.16)

Notice that, due to (3.9) as well as to (3.1), to the identity map of F there corresponds a
morphism along paths equal to the identity map of F :

idF ←→ idF . (3.17)

3.3. Functions of observables

The results expressed by (3.1) and (3.9) enable functions of observables in F to be transferred
into functions of liftings of paths (morphisms along paths) or morphisms of (F, π,M),
respectively. We will illustrate this in the case of, for example, two variables.

Let G : ( A(t), B(t)) �→ G( A(t), B(t)) : F → F be a function of the observables
A(t), B(t) : F → F . It is natural to define the bundle analogue G of G by

G : (A,B) �→ G(A,B) : γ �→ Gγ (A,B) : π−1(γ (J ))→ π−1(γ (J ))

where Gγ (A,B) is a lifting of γ and

Gγ (A,B)
∣∣
t

: = l−1
γ (t) ◦ G( A(t), B(t)) ◦ lγ (t)

= l−1
γ (t) ◦ G(lγ (t) ◦ Aγ (t) ◦ l−1

γ (t), lγ (t) ◦ Bγ (t) ◦ l−1
γ (t)) ◦ lγ (t).

(3.18)
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Thus G(A,B) is an observable lifting of paths. This definition becomes evident in the cases
when G is a polynomial or if it is expressible as a convergent power series; in both cases
the multiplication has to be understood as an operator composition. If we are dealing with
one of these cases, the definition (3.18) follows from the fact that for any observable liftings
A1, . . . , Ak , k ∈ N, of paths, the equality

A1,γ (t) ◦ A2,γ (t) ◦ · · · ◦ Ak,γ (t) = l−1
γ (t) ◦

( A1(t) ◦ A2(t) ◦ · · · ◦ Ak(t)
) ◦ lγ (t) (3.19)

holds due to (3.1). In these cases G(A,B) depends only on A and B and it is explicitly
independent of the isomorphisms lx , x ∈ M .

The commutator of two operators is a an important operator function in quantum
mechanics. In the Hilbert space and bundle descriptions it is defined, respectively, by
[ A, B]− := A ◦ B − B ◦ A and [A,B]− := A ◦ B − B ◦ A, where (see (3.18))
(A ◦ B) : γ �→ (A ◦ B)γ : t �→ (A ◦ B)γ (t) = Aγ (t) ◦ Bγ (t). The relation

[Aγ (t), Bγ (t)]− = l−1
γ (t) ◦ [ A, B]− ◦ lγ (t) (3.20)

is an almost evident corollary of (3.1). It can also be considered as a special case of (3.18). In
particular, to commuting observables (in F) there correspond commuting observable liftings
or morphisms:

[ A, B]− = 0 ⇐⇒ [A,B]− = 0. (3.21)

A little more general is the result, following from (3.20), that to observables whose
commutator is a c-number there correspond observable liftings with the same c-number as
a commutator:

[ A, B]− = cidF ⇐⇒ [A,B]− = cidF (3.22)

for some c ∈ C. In particular, the bundle analogue of the famous relation [ Q, P]− = ih̄idF
between a coordinate Q and its conjugate momentum P is [Q,P ]− = ih̄idF .

A little more complicated is the case for operators and liftings of paths at different
‘moments’. Let γ : J → M and r, s, t ∈ J . If Ğs,t : ( A, B) �→ G( A(s), B(t)), we
define the bundle analogue Ğs,t of Ğs,t by

Ğs,t : (A,B) �→ Ğs,t (A, B) : γ �→ Ğγ ;s,t (A, B) : π−1(γ (J ))→ π−1(γ (J ))

where

Ğγ ;s,t (A, B)

∣∣∣
r

:= l−1
γ (r) ◦ G( A(s), B(t)) ◦ lγ (r)

= l−1
γ (r) ◦ G(lγ (r) ◦ Ăγ ;s(r) ◦ l−1

γ (r), lγ (r) ◦ B̆γ ;t (r) ◦ l−1
γ (r)) ◦ lγ (r) : Fγ(r)→ Fγ(r).

(3.23)

Here

Ăγ ;t (r) := l−1
γ (r) ◦ A(t) ◦ lγ (r) = l

γ
t→r ◦ A(t) ◦ lγr→t : Fγ(r)→ Fγ(r) (3.24)

where (3.1) has been used and l
γ
s→t := lγ (s)→γ (t) is the (flat) linear transport (along paths)

from γ (s) to γ (t) assigned to the isomorphisms lx , x ∈ M (see equation (I.3.13))13. Now the
analogue of (3.19) is

Ă1;γ ;t1(r) ◦ Ă2;γ ;t2(r) ◦ · · · ◦ Ăk;γ ;tk (r)
= l−1

γ (r) ◦ ( A1(t1) ◦ A2(t2) ◦ · · · ◦ Ak(tk)) ◦ lγ (r). (3.25)

13 According to [17, sections 2 and 3] the observable lifting Ăγ ;t (r) along γ is obtained via linear transportation of
Aγ (t) along γ by means of the linear transport induced by l

γ
s→t along paths in the bundle morM(F, π,M) of restricted

morphisms over M of (F, π,M).
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So, if G is a polynomial or a convergent power series, the observable lifting Ğγ ;s,t (A, B)

along γ depends only on Ăγ ;s(r) and B̆γ ;t (r).
In particular for G(·, ·) = [·, ·]−, we have[

Ăγ ;s(r), B̆γ ;t (r)
]
− = l−1

γ (r) ◦ [ A(s), B(t)]− ◦ lγ (r) (3.26)

which for s = r = t reduces to (3.20). In this case the analogues of (3.21) and (3.22) are

[ A(s), B(t)]− = 0 ⇐⇒
[
Ăγ ;s(r), B̆γ ;t (r)

]
−
= 0 (3.27)

[ A(s), B(t)]− = cidF ⇐⇒
[
Ăγ ;s(r), B̆γ ;t (r)

]
−
= cidFγ(r)

(3.28)

respectively.
The above considerations can mutatis mutandis, e.g. by replacing γ (t) with x, A(t) with

A, A with A etc, be transferred to global morphisms of (F, π,M), but this is not needed for
the present investigation.

4. Conclusion

Here we have continued to apply the fibre bundle formalism to nonrelativistic quantum
mechanics. We derived different forms of the bundle Schrödinger equation which governs
the time evolution of state liftings of paths in the Hilbert bundle description.

In the bundle description, as we have seen, the observables are described via Hermitian
liftings of paths or morphisms along paths in suitable bundles. We also considered some
technical problems connected with functions of observables.

In the future continuation of the present series we plan to consider from a fibre bundle
point of view the following items: pictures and integrals of motion, mixed states, evolution
transport curvature, interpretation of the theory and its possible further developments.
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[15] Prugovečki E 1981 Quantum mechanics in Hilbert space Pure and Applied Mathematics vol 92, 2nd edn (New

York: Academic)



4934 B Z Iliev

[16] Fock V A 1978 Fundamentals of Quantum Mechanics (Moscow: Mir)
[17] Iliev B Z 1994 Transports along paths in fibre bundles. III. Consistency with bundle morphisms JINR

Communication E5-94-41, Dubna
(Iliev B Z 1997 Preprint LANL dg-ga/9704004)


